Additional information
| Full Title | Mathematics for the Physical Sciences |
|---|---|
| Author(s) | Herbert S Wilf |
| Edition | |
| ISBN | 9780486153346, 9780486450384 |
| Publisher | Dover Publications |
| Format | PDF and EPUB |
Original price was: $17.95.$4.49Current price is: $4.49.
Access Mathematics for the Physical Sciences Now. Discount up to 90%
| Full Title | Mathematics for the Physical Sciences |
|---|---|
| Author(s) | Herbert S Wilf |
| Edition | |
| ISBN | 9780486153346, 9780486450384 |
| Publisher | Dover Publications |
| Format | PDF and EPUB |
This book offers advanced undergraduates and graduate students in physics, engineering, and other natural sciences a solid foundation in several fields of mathematics. Clear and well-written, it assumes a previous knowledge of the theory of functions of real and complex variables, and is ideal for classroom use, self-study, or as a supplementary text. Starting with vector spaces and matrices, the text proceeds to orthogonal functions; the roots of polynomial equations; asymptotic expansions; ordinary differential equations; conformal mapping; and extremum problems. Each chapter goes straight to the heart of the matter, developing subjects just far enough so that students can easily make the appropriate applications. Exercises at the end of each chapter, along with solutions at the back of the book, afford further opportunities for reinforcement. Discussions of numerical methods are oriented toward computer use, and they bridge the gap between the “there exists” perspective of pure mathematicians and the “find it to three decimal places” mentality of engineers. Each chapter features a separate bibliography.
Original price was: $54.99.$24.99Current price is: $24.99.
Access Mathematics for the Physical Sciences Now. Discount up to 90%
| Full Title | Mathematics for the Physical Sciences |
|---|---|
| Author(s) | James B. Seaborn |
| Edition | |
| ISBN | 9781468492798, 9780387953427, 9781441929594 |
| Publisher | Springer |
| Format | PDF and EPUB |
This book is intended to provide a mathematical bridge from a general physics course to intermediate-level courses in classical mechanics, electricity and mag netism, and quantum mechanics. The book begins with a short review of a few topics that should be familiar to the student from a general physics course. These examples will be used throughout the rest of the book to provide physical con texts for introducing the mathematical applications. The next two chapters are devoted to making the student familiar with vector operations in algebra and cal culus. Students will have already become acquainted with vectors in the general physics course. The notion of magnetic flux provides a physical connection with the integral theorems of vector calculus. A very short chapter on complex num bers is sufficient to supply the needed background for the minor role played by complex numbers in the remainder of the text. Mathematical applications in in termediate and advanced undergraduate courses in physics are often in the form of ordinary or partial differential equations. Ordinary differential equations are introduced in Chapter 5. The ubiquitous simple harmonic oscillator is used to il lustrate the series method of solving an ordinary, linear, second-order differential equation. The one-dimensional, time-dependent SchrOdinger equation provides an illus tration for solving a partial differential equation by the method of separation of variables in Chapter 6.