Additional information

Full Title

Fracture Mechanics

Author(s)

Nestor Perez

Edition
ISBN

9781402078613, 9781475779608, 9781402077456

Publisher

Springer

Format

PDF and EPUB

Description

Fracture Mechanics is a graduate level text/professional reference that describes the analytical methods used to derive stress and strain functions related to fracture mechanics. The focus of the book will be on modeling and problem solving as tools to be used in interpreting the meaning of a mathematical solution for a particular engineering problem or situation. Once this is accomplished, the reader should be able to think mathematically, foresee metallurgically the significance of microstructural parameters on properties, analyze the mechanical behavior of materials, and recognize realistically how dangerous a crack is in a stressed structure, which may fail catastrophically. This book differs from others in that the subject matter is organized around the modeling and predicating approaches that are used to explain the detrimental effects of crack growth events. Thus, this book will take a more practical approach and make it especially useful as a basic reference for professional engineers.

Additional information

Full Title

Fracture Mechanics

Author(s)

Chin-Teh Sun

Edition
ISBN

9780123850027, 9780123850010, 9780128103371, 9781283288170

Publisher

Academic Press

Format

PDF and EPUB

Description

Fracture Mechanics covers classical and modern methods and introduce new/unique techniques, making this text an important resource for anyone involved in the study or application of fracture mechanics. Using insights from leading experts in fracture mechanics, it provides new approaches and new applications to advance the understanding of crack initiation and propagation.

With a concise and easily understood mathematical treatment of crack tip fields, this book provides the basis for applying fracture mechanics in solving practical problems. It features a unique coverage of bi-material interfacial cracks, with applications to commercially important areas of composite materials, layered structures, and microelectronic packaging. A full chapter is devoted to the cohesive zone model approach, which has been extensively used in recent years to simulate crack propagation. A unified discussion of fracture criteria involving nonlinear/plastic deformations is also provided.

This book offers a problem-solving approach to engineering thermodynamics supported with motivational case studies, historical vignettes, and applications to modern engineering issues, accompanied by a separate thermodynamic tables booklet.

It will be an invaluable resource for mechanical, aerospace, civil, and biomedical engineers in the field of mechanics as well as for graduate students and researchers studying mechanics.

  • Concise and easily understood mathematical treatment of crack tip fields (chapter 3) provides the basis for applying fracture mechanics in solving practical problems
  • Unique coverage of bi-material interfacial cracks (chapter 8), with applications to commercially important areas of composite materials, layered structures, and microelectronic packaging
  • A full chapter (chapter 9) on the cohesive zone model approach, which has been extensively used in recent years to simulate crack propagation
  • A unified discussion of fracture criteria involving nonlinear/plastic deformations

Additional information

Full Title

Fracture Mechanics

Author(s)

Sun, Chin-Teh, Jin, Zhihe

Edition
ISBN

9780123850010, 9780123850027, 9781283288170

Publisher

Academic Press

Format

PDF and EPUB

Description

Most design engineers are tasked to design against failure, and one of the biggest causes of product failure is failure of the material due to fatigue/fracture. From leading experts in fracture mechanics, this new text provides new approaches and new applications to advance the understanding of crack initiation and propagation. With applications in composite materials, layered structures, and microelectronic packaging, among others, this timely coverage is an important resource for anyone studying or applying concepts of fracture mechanics.

  • Concise and easily understood mathematical treatment of crack tip fields (chapter 3) provides the basis for applying fracture mechanics in solving practical problems
  • Unique coverage of bi-material interfacial cracks (chapter 8), with applications to commercially important areas of composite materials, layered structures, and microelectronic packaging
  • A full chapter (chapter 9) on the cohesive zone model approach, which has been extensively used in recent years to simulate crack propagation
  • A unified discussion of fracture criteria involving nonlinear/plastic deformations