Availability: In Stock

Biomolecular Thermodynamics From Theory to Application 1st Edition

SKU: 9781439800201

Original price was: $150.00.Current price is: $24.99.

Access Biomolecular Thermodynamics From Theory to Application 1st Edition Now. Discount up to 90%

Categories: ,

Additional information

Full Title

Biomolecular Thermodynamics From Theory to Application 1st Edition

Author(s)

Douglas Barrick

Edition

1st Edition

ISBN

9781439800201, 9781138068841, 9781439800195, 9781315363028, 9781315380193, 9781315321738

Publisher

CRC Press

Format

PDF and EPUB

Description

“an impressive text that addresses a glaring gap in the teaching of physical chemistry, being specifically focused on biologically-relevant systems along with a practical focus…. the ample problems and tutorials throughout are much appreciated.” –Tobin R. Sosnick, Professor and Chair of Biochemistry and Molecular Biology, University of Chicago “Presents both the concepts and equations associated with statistical thermodynamics in a unique way that is at visual, intuitive, and rigorous. This approach will greatly benefit students at all levels.” –Vijay S. Pande, Henry Dreyfus Professor of Chemistry, Stanford University “a masterful tour de force…. Barrick’s rigor and scholarship come through in every chapter.” –Rohit V. Pappu, Edwin H. Murty Professor of Engineering, Washington University in St. Louis This book provides a comprehensive, contemporary introduction to developing a quantitative understanding of how biological macromolecules behave using classical and statistical thermodynamics. The author focuses on practical skills needed to apply the underlying equations in real life examples. The text develops mechanistic models, showing how they connect to thermodynamic observables, presenting simulations of thermodynamic behavior, and analyzing experimental data. The reader is presented with plenty of exercises and problems to facilitate hands-on learning through mathematical simulation. Douglas E. Barrick is a professor in the Department of Biophysics at Johns Hopkins University. He earned his Ph.D. in biochemistry from Stanford University, and a Ph.D. in biophysics and structural biology from the University of Oregon.